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Abstract

We describe the application of the unbiased se-
quential analysis algorithm developed by Dee and
da Silva (1998) to the GEOS DAS moisture anal-
ysis. The algorithm estimates the persistent com-
ponent of model error using rawinsonde observa-
tions and adjusts the first-guess moisture field ac-
cordingly. Results of two seasonal data assimilation
cycles show that moisture analysis bias is almost
completely eliminated in all observed regions. The
improved analyses cause a sizable reduction in the
6h-forecast bias and a marginal improvement in the
error standard deviations.



1 Introduction

Hidden beneath the computational complexities of atmospheric data assimila-
tion systems lies a multitude of assumptions about the errors associated with
observing and predicting atmospheric fields. Most of these assumptions are
there for practical reasons, either because there is not enough information to
remove them, or because they result in critical computational simplifications.
Some, however, are known to be false and could be relaxed without too much
difficulty, with a potentially large benefit to analysis accuracy.

A case in point is the standard assumption that short-term model forecasts,
which are used as first guess fields for the analyses, are unbiased. There is plenty
of evidence to the contrary. For example, Figure 1 shows the means and stan-
dard deviations of the differences between observed and forecast atmospheric
water vapor mixing ratios, computed from January 1998 rawinsonde station
data in four separate regions. The 6h-forecasts were produced by the Goddard
Earth Observing System Data Assimilation System, Version 2.8 (GEOS DAS
2.8), which we describe in Section 4. The statistics show that the systematic
component of the observed-minus-forecast residuals (O-F) is not insignificant,
especially in the Tropics and throughout the upper troposphere. Assuming that
the mean observation error is small, this invalidates the assumption that the
forecast is unbiased.

[Figure 1 about here.]

Details of the forecast bias obviously depend on the particulars of the general
circulation model (GCM) that produced the forecast. They also depend on the
accuracy of the analysis used to initialize the model, which, in turn, is partly
determined by the quality and types of observations that entered into the anal-
ysis. However, the magnitude of GEOS moisture bias is not atypical. Monthly
statistics of specific humidity O-F’s produced by the operational DAS of the
European Centre for Medium-Range Weather Forecasts (ECMWF) show com-
parable biases and standard deviations (F. Lalaurette 1999, pers. comm.). The
ECMWF DAS operates at a higher spatial resolution than the GEOS DAS; it
uses a different analysis method, and it assimilates TIROS Operational Vertical
Sounder {TOVS) as well as rawinsonde moisture data. The main cause of bias
in the moisture fields produced by the two systems appears to be related to the
model parameterizations of deep convection and cloud microphysics, which are
perhaps inadequate in all current-generation GCMs (Chen et al. 1998).

The analysis produced by GEOS DAS 2.8 is a weighted average of the 6h-forecast
and the available observations. Analysis weights are derived from assumptions
about the relative accuracies of these two sources of information, which, espe-
cially in the case of moisture, are not very well known. Regardless, the analysis



inherits a fraction of the forecast bias, simply because of averaging. To illustrate,
we also show in Figure 1 the means and standard deviations of the observed-
minus-analysis differences (O-A). Although the amplitude of the bias has been
reduced by half, its sign is everywhere the same as that of the forecast bias.
Applying more weight to the observations will reduce the bias but increase the
random component of analysis error. It is generally not possible to produce an
unbiased analysis from a biased forecast, unless a reasonable estimate of the
forecast bias is available.

The purpose of this paper is to describe the implementation in GEOS DAS of the
unbiased sequential analysis algorithm developed by Dee and da Silva (1998)
(DdS). The algorithm estimates forecast bias from observations and corrects
the first guess accordingly. Since the bias estimate is continuously updated, it
is more accurately described as an estimate of the slowly varying component
of forecast error. The present implementation, which we refer to as GEOS
DAS BC, is limited to the moisture field and based on rawinsonde data only.
As it turns out, the errors in the 6h-moisture forecasts contain relatively large
persistent components, which are easily captured by the algorithm. Figure 2
displays the January 1998 O-F and O-A statistics for GEOS DAS BC, for the
same regions as before. The bias has all but disappeared, and even the standard
deviations are reduced, albeit by a very small amount. These results were
obtained simply by incorporating the forecast bias estimation in the analysis.
No other modifications were made to the DAS; in particular, the forecast and
observation error covariance models were left unchanged.

[Figure 2 about here.)

Some clarification of terms may be helpful at this point. Bias generally refers
to a non-zero mean error. In theory the mean and other statistics are defined in
terms of a hypothetical ensemble of realizations and its associated probability
density. In practical applications, however, the bias is usually defined as a time
average of a single realization of the error, taken over a finite time interval. This
quantity is spatially variable and, if the errors are bounded, it can evolve on a
time scale that is comparable with the length of the averaging interval. This
length may vary, but our results are usually stated in terms of monthly means.
The term systematic error is loosely applied in this paper to any type of error
caused by an inherent, persistent deficiency in the model or in the observing
system. In a nonlinear system systematic errors are necessarily state-dependent.
Bias is a particular manifestation of systematic errors.

Earlier work addressing systematic forecast errors in the context of data as-
similation was done at the former National Meteorological Center by Thiébaux
and Morone (1990) and Saha (1992), and at NASA’s Data Assimilation Office
by Takacs (1996). In each of these studies, forecast bias estimates were de-
rived from analyses rather than from observations. Griffith and Nichols (1996)



consider the treatment of model error, and the bias problem in particular, by
means of adjoint methods. DelSole and Hou (1999) explore the possibility of
constructing state-dependent empirical corrections, also derived from analyses,
in order to account for systematic errors in the forecast model.

The remainder of this paper explains the details of our GEOS DAS BC imple-
mentation and experimental results. In Section 2 we take a closer look at time
series of mixing ratio residuals produced by GEOS DAS 2.8, to better under-
stand the manifestations of systematic errors in the model forecasts. We briefly
review the unbiased sequential analysis algorithm in Section 3. There we also
discuss the specification of a covariance model for the bias estimation errors,
as well as other general implementation aspects. In an Appendix we derive the
optimal weights for the unbiased analysis equations under a reasonable set of
assumptions; this issue was not settled in the original presentation of the algo-
rithm in DdS. In Section 4 we describe the specifics of the implementation in
GEOS DAS and present results of two seasonal data assimilation experiments
with the new method. Section 5 contains our conclusions and plans for future
work.

2 Evidence of systematic model errors

We can detect systematic model errors by comparing forecasts with observa-
tions. Non-zero mean residuals, computed over suitably long time periods and
over a reasonably large set of stations, can be attributed to systematic model
errors, provided that the mean observation errors are small. This will be the
case if systematic errors in the data have been effectively removed. It is stan-
dard practice, for example, to correct rawinsonde height data at high altitudes
for the effects of solar and infrared radiation (Mitchell et al. 1996). Recent work
by Zipser and Johnson (1998) shows that humidity soundings may also be con-
taminated by instrument-dependent systematic errors, but there is currently no
practical way to correct these data in real time. Nevertheless, quality-controlled
rawinsonde observations continue to serve as a benchmark for all other estimates
of atmospheric moisture content.

The mixing ratio residual statistics shown in Figure 1 represent averages over a
month of station data from four specific regions. The monthly means and stan-
dard deviations are similar during other periods and for other station selections,
but they are usually largest in the Tropics and smaller (but seasonably depen-
dent) in the Extratropics. This reflects a strong dependence of moisture forecast
errors, and probably of observation errors as well, on the amount of moisture
present in the atmosphere and on its local variability. To see this more clearly,
it is helpful to look at individual time series of station data and corresponding
6h-forecasts.



[Figure 3 about here.]

We plotted in Figure 3 the January 1998 mixing ratio observations, forecasts,
and residuals, for three pressure levels at Singapore. The lower panel shows
that the 8350hPa forecasts are consistently drier than the observations. Most of
the dots (observations) are above the thin curve (forecasts), and accordingly the
residuals (thick curve) tend to be positive. At higher levels the situation is not
as obvious. The forecasts at 300hPa are too wet during several periods lasting
a few days or more. This is consistent with the regional mean wet bias in the
forecast model at this level, but there are also periods with several consecutive
dry forecasts.

We have looked at many such plots for different time periods and stations in var-
ious locations. In contrast with the monthly mean statistics, which are primarily
a function of region, altitude, and season, the time-dependent characteristics of
systematic forecast errors are not so easily quantified. They are best described
as having a tendency to persist for a while: successive 6h-forecasts often re-
main either too wet or too dry for a few days or more. Although surely there
are underlying physical explanations, the onset of such spells seems to occur
randomly.

These appear to be manifestations of serially correlated model errors. In a the-
oretical study, Daley (1992a) used a Kalman filter on a simple one-dimensional
linear quasi-geostrophic model to examine the potential impact of such errors
on analysis accuracy. He also pointed out the practical difficulty of distinguish-
ing between model bias and serially correlated model errors, even though the
two are conceptually quite different. In our analysis of water vapor mixing ra-
tio observed-minus-forecast residuals we have seen evidence of both types of
phenomena.

Serial correlation of the residuals shows up clearly in the time spectra. We
plotted normalized power spectra, as a function of wave period, for Tropical,
Northern-Hemispheric, and Southern-Hemispheric rawinsonde stations in Fig-
ure 4. There is an excess of power in waves with periods longer than about
5 days, in each of the regions and at all levels; note that serially uncorrelated
errors would result in flat spectra. These average spectra were obtained by
(i) scaling the residuals at each station and at each level, so that the means
are zero and the standard deviations one; (ii) computing the spectrum of each
scaled time series; and (iii) averaging the spectra for all time series consisting
of at least 50 residuals. Since there are gaps in the data, we used a spectral
analysis algorithm for unevenly spaced data (Press et al. 1992, Section 13.8).

[Figure 4 about here.]



We will show in the next section how to use this type of spectral analysis for
calibrating the parameters in the bias correction algorithm.

3 On-line bias correction

Standard analysis methods are bias-blind, in the sense that they ignore biases in
the first guess field. If the first guess is actually biased, then so will the analysis
be biased. An unbiased analysis method must therefore include a scheme for
estimating and removing the first-guess bias.

3.1 The bias-blind analysis equation

In a sequential statistical data assimilation system such as GEOS DAS, analy-
ses are produced at regular (typically 6-hour) intervals. Each analysis combines
quality-controlled observations with a forecast issued from an initial state de-
rived from the previous analysis. Symbolically, for k = 1,2,...,

wi = w] + K [wg — Haw]], (1)
where the n-vectors w§, w{ are the analysis and forecast at time ¢, respectively,
and the p-vector w{ contains the observations. The pxn-matrix Hy is the

observation operator, which maps model variables to observables, and Ky is an
nxp-matrix of analysis weights.

If both forecast and observations are unbiased, and their errors are mutually
independent, then the optimal (least-squares) analysis obtains for

-1
K; = P/HT [HkP{HZ + Rk] : (2)

with Pi and Ry the forecast and observation error covariances, respectively
(Jazwinski 1970).

The development of adequate covariance models is an area of active research. In
(linear) theory, P{ and R; can be computed explicitly using knowledge of the
joint probability distribution of model and observation errors. In reality there
is not nearly enough information available to warrant the staggering expense
that such a computation would entail. Furthermore, the value of a brute-force
approach is questionable, since many of the assumptions that render (2) opti-
mal are incorrect in any case (Dee 1991; Dee 1995). Thus, operational data
assimilation systems use highly simplified representations of the required er-
ror covariances. These are usually obtained by a combination of statistical data



analysis, careful consideration of multivariate balance requirements, optimal use
of computational resources, and artful tuning of covariance parameters.

In this paper we largely ignore these issues, because (1) implies that the analysis
w{ will be biased if the forecast w{, is biased, regardless of the analysis weights
K. See DAS (Section 2) for more discussion of the transfer of forecast bias to
the analysis, and of the effect of adjusting the covariance models.

3.2 The unbiased analysis equations

DdS showed how to produce unbiased analyses in a sequential data assimilation
system when the forecast is biased. The idea is to provide a running estimate of
the bias and to correct the forecast accordingly. The result is the replacement
of (1) by the following two-step algorithm:

by = by — Ls [Wi —Hy(w] - Bk—l)] ) 3)

wi = (w] - Bi) + K [wg - H(w] - By)]. @)

The n-vector Ek is the estimated forecast bias at time t,. The nxp-matrix
Ly, which we will specify below, defines the weighting coefficients for the bias
update equation. Note that (4) and (1) are identical when by = 0.

The two requirements for the analysis w} to be unbiased are that (i) the obser-
vations w¢ are unbiased, and (ii) Bk_l is an unbiased prediction of the forecast
bias at t;. This statement follows simply from linearity and holds regardless
of the specification of the gain matrices Ly and K. The second condition
is reasonable when forecast errors tend to persist at fixed locations. It is not
reasonable, for example, when the errors are dominated by large, systematic dis-
placements occurring on synoptic time scales. If a better (e.g., state-dependent)
prediction of forecast bias is available, then it can replace Bk_l in (3).

Whether gk_l provides an unbiased estimate of the forecast bias at t; also de-
pends on the data coverage, both in space and time. Clearly, if a particular
region remains unobserved for a while, then it is not possible to obtain a mean-
ingful bias estimate there, unless additional information (for example, about
the spatial structure of the forecast bias) is used for the bias prediction. As it
stands, the bias estimate generated by (3) will remain constant in regions devoid
of observations. It is therefore important to control the impact of an occasional
observation in a poorly observed region. This can be done by relaxing the bias
estimate to its initial state in the absence of observations, or by careful data
selection. With some abuse of notation, therefore, the observations w{ (and
associated Hy) used in (3) and (4) may be different.

-1



Lacking any a priori information about forecast bias, we take

Consequently the bias estimate will remain zero in unobserved regions, and the
analysis produced by (4) will differ from the bias-blind analysis (1) only where
data exist. If clearly discernible permanent spatial structures show up in the
bias estimates, and there is reason to believe they can be extrapolated, then (5)
should be modified accordingly.

We show in Appendix A that, within reasonable approximation, the optimal
weights for the bias estimator (3) are

-1
L, = PHT [HkPZH{ +HP{HT + Rk] , (6)

where Pz is the error covariance of the bias estimate Sk_l. Since the observa-
tions used for the bias estimation are used again in the analysis equation (4),
the best choice of analysis weights K, is not obvious. However, in the Appendix
we derive the remarkable result that, if Ly is defined by (6), then the optimal
analysis weights for (4) are still defined by (2).

The cost of solving the unbiased analysis equations is roughly double that of
computing the standard, bias-blind analysis. Any analysis system designed
to solve (1) can be used to solve both (3) and (4), simply by changing the
background field and the analysis weights. Possible ways to economize are (i)
to use only a subset of the observations for the bias estimation; (ii) to estimate
the forecast bias at a reduced spatial resolution; (iii) to update the forecast bias
estimates less frequently.

3.3 Specification of the error covariances

The bias estimator requires specification of the error covariances P of the
bias estimates, in addition to the forecast and observation error covariances
P,{ and Ry that are needed for the analysis. We are primarily interested in
incorporating the unbiased analysis equations into an existing operational data
assimilation system. Initially, therefore, we regard the forecast and observation
error covariances as given, and use a very simple model for the bias estimation
error covariance. Qur approach is to first concentrate on reducing the mean
analysis errors; once that has been achieved we can hope to further improve the
analyses by introducing better covariance models.

DdS proposed the following model for the error covariances of the bias estimates:

Pz = 7P£, (N



with « constant. This model assumes that the spatial correlations of the bias
estimation errors are identical to those of the random component of the forecast
errors, and (in the multivariate case) that the two types of errors are balanced in
the same way. This is an attractive starting point since it takes full advantage of
the effort invested in formulating and implementing a forecast error covariance
model that produces reasonable results in an operational setting. There are
obvious ways to generalize, for example, by allowing v to depend on space
and/or time, or by adjusting the correlation models incorporated in P,{.

To arrive at a means for determining an appropriate value for the parameter
~, we study the behavior of the bias estimator at a single observation location
that coincides with a model grid point. The bias gain (6) is then

Lk:/\zaf/(og+a}+ag), (8)

with 04,0, and o, the error standard deviations for the bias estimate, the
forecast, and the observation, respectively, which we take to be stationary for
the moment. Equation (3) becomes

b = be_y — A[wg — (w,{ - be-1)]
k-1

=-AY (1= Ay, 9)
j=0

with vy = wg — w{, and we used 50 =0.

In case of a constant forecast bias by = b it is easy to show from (9) and the
assumption that observations are unbiased that limkﬁoo(lh)k) = b when 0<v<
2. Therefore the mean bias estimate over any sufficiently long time interval
will converge to the mean forecast error over that interval. More generally,
the asymptotic first-moment properties of an estimator for a linear, stationary
system are not sensitive to the covariance specifications, as long as the system
is completely observable and controllable (Jazwinski 1970, Section 7.6). Correct
specification of the error covariances only improves the rate of convergence to
the asymptotic estimate. This is consistent with our earlier statement that
the analysis equations (3-4) are unbiased regardless of the error covariance
specifications. The covariances, or the value of 7 in this scalar case, determine
the response of the estimator to errors at shorter time scales.

We showed in Section 2 that, in the absence of forecast bias correction, the time
series of observed-minus-forecast residuals typically have colored spectra. We
would like to determine a value for the parameter A such that the spectra of
the bias-corrected observed-minus-forecast residuals become as flat as possible,
in some well-defined sense. In the time-frequency domain, (9) corresponds to

Bn = Rn()‘)l’na (10)



where 3,,, v, are the Fourier coefficients for wavenumber n > 0 of the time series
by, vy, respectively. The response function R, is

Ra(\) = =A/[1 = (1 = N)e 273t/ (11)

with At the time interval between observations. A flat spectrum of vy + Ek
corresponds to

|vn + Bl = |[1 + Rna(A)]va| = const. (12)

Clearly (12) cannot be satisfied exactly by manipulating the single free param-
eter A\. Instead we can use A to reduce the energy in the long-wave portion
of the spectrum of observed-minus-forecast residuals. A practical method for
estimating A is to compute the average normalized power spectrum P, of the
residuals for a set of stations (see Section 2), and then to find A that minimizes
the functional

FO) =" n? {I[1 + Ra(N)]Pal - 1)7. (13)

The factor n? serves to emphasize the impact on the long-wave portion of the

spectrum, and we prefer to use average spectra in order to increase the sample
size. A value of A can thus be computed, say, separately for data at fixed
pressure levels from stations in selected regions.

With oy and o, given, (7-8) imply
A a} + 02
— 14
71T o} '’ ( )
which, in conjunction with (7), completes the specification of the bias estimation
error covariance model. This is sufficient for our present purposes.

We briefly outline what would be the next step, namely the re-estimation of
forecast error standard deviations and other covariance parameters, which, after
all, are likely to change as a result of the introduction of forecast bias correction.
The bias-corrected observed-minus-forecast residuals are

vi = wl — Hi(wl — bi_). (15)
Using {A.2,A.1,A4,A.7) of the Appendix,
vi = €] ~ Hi(ef — €}), (16)

where €§, ei , sz are the errors in the observations, in the bias-corrected forecast,

and in the bias estimate, respectively. The covariances of the residuals are
therefore

(vivl) = Hy,P{HT + H,P!H + R, (17)
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where we used (A.3,A.5,A.6). This relation between the data and the covariance
models provides the basis for estimating parameters of P!, P?, and Ry by, for
example, maximum-likelihood techniques (Dee 1995; Dee and da Silva 1999).
Parameters of forecast and bias estimation error covariances are probably not
separately identifiable, so that a model such as (7) will still be needed to close
the problem.

4 Implementation in GEOS DAS

As a first test of on-line forecast bias estimation and correction in an opera-
tional data assimilation system, we modified the GEOS DAS 2.8 moisture anal-
ysis and computed data assimilation cycles for two seasons (December 1997-
February 1998 and June-August 1998). Here we briefly describe the relevant
characteristics of the system, and then discuss the moisture bias correction ex-
periments. In order to save space we show results for January 1998 only. Results
for other months are qualitatively similar, and lead to identical conclusions.

4.1 Description of GEOS DAS 2.8

GEOS DAS 2.8 produces global atmospheric data sets at 6-hourly intervals (3-
hourly for surface fields) on a 2° x 2.5° latitude-longitude grid, at 48 vertical
levels in both pressure and sigma coordinates. The core of the system consists
of an atmospheric GCM (Takacs et al. 1999), the MOSAIC land-surface model
(Koster and Suarez 1992; Molod and Salmun 1999), the Physical-Space Statis-
tical Analysis System (PSAS) (Cohn et al. 1998) and various interface functions
including, for example, quality control of observations. The final, assimilated
data products are obtained from the analyzed fields by means of the incremental
analysis update (IAU) procedure (Bloom et al. 1996).

Apart from conventional atmospheric observations, the system accepts geopo-
tential heights retrieved from TIROS operational vertical sounder (TOVS) data,
cloud-drift wind retrievals, and surface winds obtained from SSM/I wind speed
data. The only observations of atmospheric moisture entering the system are
obtained from rawinsonde soundings, although efforts are currently underway to
implement the assimilation of interactive TOVS moisture retrievals (Joiner and
Rokke 1999) and SSM/I-derived total precipitable water obtained from NASA’s
Tropical Rainfall Measuring Mission (TRMM) (Hou et al. 1999).

At 6-hourly intervals during the assimilation, a global analysis is computed in

three steps: first for the moisture field (water vapor mixing ratio), then for the
upper-air variables (geopotential heights and winds), and finally for the surface
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variables (sea-level pressure and 10m-winds). In each case PSAS solves the
analysis equation (1), combining all available observations taken within 3 hours
of the analysis time with the first-guess fields produced by the GCM. Analysis
weights are defined by (2), based on prescribed forecast and observation error
covariance models. The analysis corrections to the first-guess fields are then
used in the IAU procedure to force the next 6-hour model integration.

The mixing ratio forecast and observation error variances are such that their
ratio is a function of pressure only, ranging between a minimum value of 0.76
{at 700hPa) and a maximum of 2.8 (at 300hPa). This ratio represents, in a
scalar analysis, the weight of a single mixing ratio observation relative to that
of the first-guess value at that location. To complete the covariance model spec-
ifications, observation errors are assumed uncorrelated in space and time, while
forecast error correlations are represented by a separable function of horizon-
tal distance and pressure. The variances and correlation parameters have been
estimated from observed-minus-forecast residuals by maximum-likelihood tech-
niques (Dee et al. 1999). Clearly, these exceedingly simple models leave ample
room for improvement.

4.2 Description of GEOS DAS BC

The experimental system GEOS DAS BC is identical to GEOS DAS 2.8 in all
respects, except that the two-step algorithm (3,4) replaces the moisture analysis
equation (1). Both steps are solved with PSAS, using the same forecast and
observation error covariance specifications. For the bias estimation step (3),
we only use observations in the vicinity of stations that report at least once a
day. The computational cost of the moisture analysis is then roughly twice that
in the original system. Since the number of moisture observations is relatively
small (about 7000 per day), the additional expense is insignificant in the context
of the total DAS computation.

The error covariances for the bias estimates, needed to define the weights (6),
are modeled by (7). We tuned the parameter -« using the spectral estimation
procedure described in Section 3, separately for each pressure level, from time
series of GEOS DAS 2.8 observed-minus-forecast residuals restricted to different
time periods and regions in space. The estimated values varied somewhat,
tending to be largest at the upper levels, where the serial correlation of forecast
errors is most pronounced. We ended up using a constant value v = 0.22 for
our experiments, feeling that further refinement may not be worthwhile until
improved covariance models can be implemented.

12



4.3 January 1998 results

We first examine the time spectra of the GEOS DAS BC observed-minus-
forecast residuals in order to validate our choice of the parameter . As discussed
in Section 3, the sequential bias estimator acts as a first-order linear filter on the
data residuals. Its behavior at a single station location can be characterized by
a response function in the time-frequency domain, and (with forecast and ob-
servation error variances given) is determined by the parameter 7. An optimal
analysis scheme would produce white (serially uncorrelated) observed-minus-
forecast residuals (Daley 1992b). Figure 5 shows that the regionally averaged
spectra of the GEOS DAS BC residuals are in fact much flatter than those for
GEOS DAS 2.8 (shown in Figure 4).

[Figure 5 about here.]

In an earlier experiment with v = 0.5 we found that the spectra had too little
power in the low wave numbers (that is, the opposite of Figure 4). The removal
of forecast and analysis bias was equally effective in that experiment (in the
monthly-mean sense), but the random component of forecast error was slightly
larger. This is consistent with the scalar theory presented in Section 3, and sup-
ports our contention that the analyses are unbiased regardless of the covariance
specifications. However, increasing the value of 7 has the effect of contaminat-
ing the bias estimates with noise, and this deteriorates the analyses even if it
does not change their time-mean properties. We find our procedure for esti-
mating the parameter - based on a spectral analysis of observed-minus-forecast
residuals to be quite effective.

[Figure 6 about here.]

We now take a look at the impact of the forecast bias correction at a single
station. Figure 6 shows time series data at 300hPa, 500hPa, and 850hPa for
the Singapore rawinsonde station; this should be compared with Figure 3. The
thick solid curves are the corrected observed-minus-forecast residuals w§ ~ (wi -
Bk_l). The dashed curves show the forecast bias predictions Bk_l; they indi-
cate that the 6h forecasts tend to be too wet at the upper levels and too dry
below. The bias estimates vary slowly with time; adjustments are made when-
ever there are persistent differences between the bias-corrected forecasts and the
observations. The bias estimates may remain quite small for extended periods,
for example at 850hPa between January 14-25.

[Figure 7 about here.]
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Residual time series at a single station fluctuate wildly because of random (or
small-scale) observation and forecast errors. It is easier to see the impact of the
bias correction by averaging over several stations. For the Indonesian region,
for example, we show in Figure 7 the time evolution of the mean observed-
minus-forecast residuals, for GEOS DAS 2.8 (thin curves) and for the modified
system (thick curves). A point on each curve is obtained simply by averaging
the residuals at all stations in the region. Since the bias-corrected forecasts
( — by 1) are truly forecasts, in the sense that they do not depend on data
at t,,, these plots demonstrate that the algorithm is able to predict the forecast
bias relative to future observations.

[Figure 8 about here.]

Figure 2, briefly discussed in the Introduction, shows the monthly means and
standard deviations of both the observed-minus-forecast and observed-minus-
analysis residuals, for four dxﬁ”erent regions. Again, these statistics apply to the
bias-corrected 6Ah-forecasts (wk —by_ 1); they show that, by being able to predict
the forecast bias, the algorithm succeeds in producmg unbiased analyses. An
interesting question is whether the improved analyses have a positive impact on
the uncorrected forecasts w,{ as well. This is by no means self-evident, since
the mechanisms by which model errors are generated are not well-understood,
although almost certainly nonlinear. Figure 8 shows that, in most cases, the
mean errors in the uncorrected forecasts produced from the unbiased analyses in
GEOS DAS BC are in fact much smaller than the errors in the GEQOS DAS 2.8
forecasts. This proves that the improvements in the unbiased GEOS DAS BC
analyses do in fact result in significantly better (in the mean sense) short-term
forecasts, at least in observed regions.

In Figure 9 we show an example of a moisture forecast, the forecast bias estimate,
and the analysis produced by the algorithm. This is a snapshot for a particular
region (Indonesia), level (300hPa), and synoptic time (0Z January 1 1998).
The bias estimate represents a spatial and time average of recent observed-
minus-forecast residuals at the stations shown. The estimate indicates that the
forecasts at that level have been consistently wet lately, according to rawinsonde
soundings. The analysis further adjusts the bias-corrected forecast based on the
current observations.

[Figure 9 about here.]

The spatial structure of the forecast bias estimate shown in Figure 9 clearly
reflects the distribution of station locations. There is simply no information in
our scheme about forecast bias other than that contained in the observations.
Far enough away from station locations the bias estimates remain at their initial
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values, which are zero in our experiments. This limits the total impact of the
bias correction on the global moisture analysis. Furthermore, the final GEOS
DAS data products are based on the output of the IAU procedure, which consists
of an integration of the GCM forced by the analysis increments. It is conceivable
that the effect of the bias correction on the assimilation, even in the vicinity of
data locations, is modified by the IAU due to the influence of the GCM.

To illustrate these points more clearly, the upper left panel of Figure 10 shows
the January 1998 total precipitable water (TPW) according to the GEOS DAS
2.8 assimilation. The upper right panel shows the relative error in this assim-
ilated data set with respect to TPW derived from SSM/I data (Wentz 1997).
These estimates are available over the oceans only, and since we use no mois-
ture data other than those obtained from rawinsonde soundings, the errors are
quite large. This plot gives an indication of the degree of uncertainty in the
GEOS DAS moisture estimates. The lower left panel shows the relative differ-
ence between the GEOS DAS 2.8 assimilated TPW and the TPW computed by
vertically integrating the GEOS DAS 2.8 BC moisture analyses. We regard this
as a measure of the total impact of the forecast bias correction on the moisture
analyses. The impact is not very large (compared to the uncertainty implied
by the Wentz data) and mostly restricted to land. The lower right panel shows
the relative impact of the bias correction on TPW in the assimilation, which
appears to be slightly damped by the IAU procedure.

[Figure 10 about here.]

5 Conclusions

The object of an analysts is to make the best possible use of the available ob-
servations, given a model forecast and whatever is known about the errors. The
observations indicate that model errors tend to persist. This means that the
data contain useful information about likely errors in subsequent forecasts. A
human forecaster would take advantage of this information, being more natu-
rally inclined to think in terms of systematic rather than random model errors.
Of course, the representation of model errors by zeéro-mean white stochastic
processes in an automated analysis algorithm is strictly a mathematical device,
inspired by computational convenience rather than empirical knowledge.

The unbiased analysis method, introduced in DdS and tested here in the context
of the GEOS DAS moisture analysis, includes a simple scheme for estimating
forecast bias. Analyses are produced as usual, but only after removing the bias
from the forecast. The method relies completely on observations for estimating
the bias, although it can be easily generalized to incorporate any additional
information about forecast bias that may be available. As explained in DdS,
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forecast bias estimation is a data assimilation problem in its own right; it re-
quires unbiased observations (in this case, rawinsonde soundings) supplemented
by a model for the bias (in this case, persistence).

This view clearly exposes the main limitations of the method. First, exclusive
reliance on observations can be dangerous, since it presumes that effective qual-
ity control and bias correction algorithms for the observations are in place. In
practice, forecast bias estimates at individual stations must be carefully moni-
tored in order to detect problems with the observations themselves. It is also
important to control the impact of an occasional observation in a poorly ob-
served region. Second, in the absence of additional information about forecast
bias, the estimates are only meaningful when and where observations are regu-
larly available. This limits the impact of the bias correction in a global analysis
system, as long as rawinsonde soundings only are used to estimate the bias.
Ultimately, of course, observations that are deemed sufficiently accurate for an
analysis should be useful for bias estimation as well. In the moisture case, for
example, we intend to investigate the use of TPW retrievals to obtain nearly
global estimates of tropospheric moisture bias.

Our experiments show that the method is extremely effective in predicting mois-
ture forecast bias based on recent observed-minus-forecast residuals. It is there-
fore able to produce unbiased moisture analyses at all levels in the observed
regions. This leads to improved initial conditions for the forecast model and,
as a result, a reduction in forecast errors. Specifically, we showed that the 6hA-
forecast bias is significantly reduced in many cases. Having eliminated analysis
bias allows one to identify mean forecast errors with mean model errors, and
so the bias estimates produced by the method are in fact estimates of mean
model error. These estimates could prove very useful in quantitative studies of
model error, which are important both for model development and for advances
in data assimilation.

The upshot of our method is that it uses observations more effectively, by remov-
ing the assumption that the forecast model is unbiased. It might be argued that
this approach offers only a temporary solution taylored to a poorly performing
model. Surely, errors will get smaller as models and data improve. However,
requirements for analysis and forecast accuracy can be expected to increase ac-
cordingly. The need for analysis methods that efficiently extract small-scale
information from observations will grow. Such methods must involve adequate
descriptions of model errors arising from the treatment of topography, convec-
tive parameterizations, etc. It is not at all obvious that the most effective
approximation will represent model errors by zero-mean white noise. In fact,
we believe that the treatment of systematic discrepancies between model and
data will be even more important in future high-performance data assimilation
systems.

We plan to extend this work to the complete GEOS DAS analysis system. There

16



is evidence of significant biases and serially correlated model errors in data
residuals for all atmospheric variables. The main problems to be addressed in
this context are the data selection from nonstationary observers, and a reduction
of computational expense. We also hope to be able to produce forecast bias
estimates for different lead times, and examine whether, say, 24h forecast skill
can be improved by making use of these estimates in real time. Finally, we
would like to explore ways to use the forecast bias estimates for identifying
specific sources of model error, and thereby help improve prediction models.

Acknowledgements. The authors are grateful to Minghang Chen, Ron Errico,
Siegfried Schubert, and Arlindo da Silva for many fruitful discussions of this
work.

A Optimal gains

In order to make claims about consistency and optimality of an estimator we
need to be precise about what we wish to estimate and about the errors in
our sources of information. The unknowns at time t; are wi, the true state
of the atmosphere, and by, the deterministic component of forecast error. Our
assumptions on forecast and observations are

wl =wl + by +¢f, (ly =0, (leTy=P] (A1)
wp = Hyw}, + €, (e2) =0, (e2(eD)T) = Ry (A.2)
<eg(e{ )T> =0 (A.3)

and that both noise sequences ez,ei are white. With by = O these are the
standard assumptions for the derivation of the Kalman filter (Jazwinski 1970,
Section 7.3). Bias parameters were first introduced by Friedland (1969), who
derived a sequential bias estimator which is closely related to our unbiased
analysis equations. See DdS for a detailed discussion of the relationship between
Friedland’s algorithm and ours.

We further assume that a prediction b} of the bias by is available such that

b} = by + €}, (k) =0, (ek(e)T) = P} (A4)
(e2(el)T) =0 (A.5)
(eleh)™y =0 (A.6)

Assumption (A.5) is analogous to (A.3); it is clearly true for white observation
errors when b} is a prediction in the true sense of the word, that is, an estimate
that does not depend on future data. The cross-covariance assumption (A.6) is
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more troublesome, however, and should be regarded as an approximation. In
particular, for our unbiased analysis equations (3-4) the bias prediction is

b2 = by_;. (A7)

The forecast w{ and the bias prediction Bk_l both depend on data at #;_;.
Clearly, therefore, their respective errors are not independent. On the other
hand, the forecast errors e,{ involve predictability and model errors as well, so
we expect that the neglected cross-covariances are relatively small.

Substitution of (A.1,A.2,A 4 A.7) into (3) gives

Be = bi + [ - LeHi] e} — Ly [ef - Haef], (A8)

which shows that Ek is an unbiased estimate of b, for any L;. It is also straight-
forward to show, using the second-moment assumptions in (A.1-A.6), that the
best (minimum-variance) linear unbiased estimate cobtains when Ly is given
by (6). Optimality depends on the correct specifications of all error covari-
ances; in practice, of course, this will not be the case. In particular, as we
already pointed out, (A.6) is an approximation.

It is not at all obvious, however, that the analysis weights K; defined by (2)
are optimal. After all, the observations wj are used twice: first, for estimating
the bias, and second, for computing the analysis. We can write the analysis
equation (4) as

%! =wl — by, (A.9)
wi = W] + K [wg - Hew]] . (A.10)
The unbiased analysis (A.10) combines two sources of information—a bias-

corrected forecast and a set of observations——whose errors are not independent.
In fact, using (A.9), (A.1), and (A.8),

~f — & f t
£ =W, — W,

1

I _ b ¢
w; — by — wy

(A.11)

E{ + by — Bk
(I - LiH] (e,{ - ei) + Lieg.

The optimal analysis weights, properly accounting for the cross-covariances, are
(Jazwinski 1970, Section 7.3, Example 7.5)

~ -~ . -1
Ky = [P{HE - x{] [HkP,{HZ + Ry — HXT — ka[] (A.12)
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Pl = (5lEDT), (A.13)
Xi = <eg(’§{)T>. (A.14)

With L defined by (6), it turns out that (A.12) and (2) are identical. The
remainder of this Appendix proves this statement.

To simplify notation, we omit the subscript k, and define
P=P’+ P/, (A.13)
S=HPH” +R. (A.16)

Then (A.11) and (6) imply that
P/ =[I-LH]P[I - LH)" + LRL”

=P -P'HTS-'HP/ - PHTS 'HP?, (4.17)
and that
X =RLT
_ RS-'HP* (A.18)

where we used (A.1-A.6). The first factor of (A.12) is
P/HT - XT = PH?T - P’H7S 'HP/HT - PHTS 'HP’H” - P’'H”S"'R
=PHT - P°HTS"! [HP/H” + HP*H” + R] - P/H"S™'HP’H”
= PHT - P°HT - P/HTS'HP*HT
=P/HT [I-S"'HP'HT|
=P/HTS™! [HP/HT + R].
(A.19)
The inverse of the second factor is
HP/HT + R - HXT - XHT
= HPHT — HP*HTS'HP/HT - HPHTS'HP’H”
+R - HP'H?S 'R - RS“'HP’H”
=S - HP'HTS™! [HP/H” + HP'H” + R]
-~ HP/HTS'HP’H” - RST!HP’HT
=S - HP’H” - [HP/H” + R] S"'HP’H”
=S - 2HP*HT + HP’HTS 'HP*H”
= [I- HP*H”S'] [S - HP’H']
= [I- HP*H”S"!] [HP/HT + R].
(A.20)
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Combining the two factors,

K = P/H’S"! [HP/HT + R] [HP/H” + R] ' [I- HP*H"S™!]™
= P/H’s"! [ - HP*H"S!]™"
=P/H’ [S - HP'HT| "
= p/H” [HP/HT +R] .
(A.21)
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Figure 1: Means (solid) and standard deviations (dashed) of atmospheric wa-

ter vapor mixing ratio observed-minus-forecast (top panels) and
observed-minus-analysis (bottom panels) residuals, as a function of
pressure, for four different regions. Observations consist of quality-

controlled rawinsonde reports; 6h-forecasts and analyses were pro-
duced by GEOS DAS 2.8.
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Figure 2: As Figure 1, but for GEOS DAS BC. For reference, the GEOS DAS
2.8 observed-minus-forecast standard deviations are reproduced in the

top four panels (dotted curves).
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Figure 3: Water vapor mixing ratio [g/kg] observed-minus-forecast residuals
(thick solid curves), rawinsonde observations (dots), and 6h-forecasts
(thin solid curves) at 300hPa, 500hPa, and 850hPa in Singapore, for
the month January 1998. The scales for the residuals are on the left;
those for the observed and forecast values on the right. The empty
dot in the center panel represents an observation that was rejected by
quality control.
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Figure 4: Average normalized power spectra of water vapor mixing ratio
observed-minus-forecast residual time series, for January 1998 rawin-
sonde reports in the Tropics (solid), Northern Hemisphere (dashed},
and Southern Hemisphere (dotted). Horizontal axis is wave period,
in days; vertical axis is normalized power. White noise would have a
flat spectrum with power 1 at all wavelengths.
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Figure 5: As Figure 4, but for GEOS DAS BC.
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Figure 6: As Figure 3, but for GEOS DAS BC. The dashed curves in each panel
correspond to the forecast bias estimates at the station location; scales
for these estimates are indicated on the left vertical axes.
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Figure 7: Time evolution of mean mixing ratio [g/kg] observed-forecast residuals

for Indonesian rawinsonde stations, at 300hPa, 500hPa, and 850hPa.

Forecasts are from GEOS DAS 2.8 (thin curves) and GEOS DAS BC
(thick curves).
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Figure 8: Monthly mean mixing ratio [g/kg] observed-minus-forecast residuals
for rawinsonde stations in four different regions. Forecasts are from
GEOS DAS 2.8 (thin solid curves), and from GEOS DAS BC before
(dashed curves) and after (thick solid curves) bias correction.
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Figure 9: Station locations, 300hPa moisture forecast, bias estimate, and final
moisture analysis near Indonesia for January 1 1998 at 0Z. Contour
values range from 0 g/kg (lightest) to 0.8 g/kg (darkest) by steps of

0.1 g/kg.
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Figure 10: January 1998 mean total precipitable water (in mm) in the GEOS
DAS 2.8 assimilation (upper left panel); the relative error (in per-
cent) of the GEOS DAS 2.8 assimilation with respect to the Wentz
retrievals (upper right panel); the relative impact (in percent) of the
forecast bias correction on total precipitable water in the GEOS DAS
2.8 BC moisture analyses (lower left panel); and the relative impact
(in percent) of the forecast bias correction on total precipitable water
in the GEOS DAS 2.8 BC moisture assimilation (lower left panel).
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